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Background

PLS Population Model [Helland, 1990] which further discussed by
[Naes and Helland, 1993, Helland, 2001]

PLS, heavely developed [Wold, 1985, Naes and Helland, 1993, De Jong,
1993], without addressing the population model [Cook et al., 2013]
Mostly popular among chemometrician
Was not very popular among statistician which has changed and is
nowadays considered as an essential tool for multivariate analysis
Accounting the population model, new estimation methods have
been purposed such as Envelope [Cook et al., 2010, Cook and
Zhang, 2016] and BayesPLS [Helland et al., 2012] which are closely
related to PLS
Cook et al. [2013] said that PLS is fundamentally an envelope in the
population model
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Background

This study attempts to make an emperial comparison among PCR,
PLS, Envelope and BayesPLS model on the basis of their
prediction ability

Using simrel [Sæbø et al., 2015] R-package, data with diverse
nature are simulated.
simrel allows to have control over latent structure (relevant
component) of the data, fine analysis of strength and weakness of a
models is possible
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Statistical Model

The common ground of all the methods is to best describe (fit) the
multivariate linear model below,

y = Xβ + ε (1)

where,

y : Response
X : Matrix of p predictor variable
β : Regression Coefficients
ε : Error ε ∼ NID(0, σ2)

Here, both y and X are considered to be centered.
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Statistical Model

All the models under this study consider a subspace of predictor
variables that is relevant for response. They differ in the ways of
finding the subspace and corresponding model estimates. The true
estimates can also be written as,

β = Σ−1
XXσXy =

p

∑
j=1

1
αj

ejet
jσXy =

p

∑
j=1

γjej

where,

γj :
et

jσXy

λj

ej : Eigenvector of Σxx
λj : Eigenvalue of Σxx
σXy : Covariance between y and X

So, True regression estimates are the space spanned by the eigenvectors
of population covariance matrix Σxx.
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Comparison of Methods

PCR PLS

* Regression of response on latent
space of predictor

* Estimation through
Iterative algorithm

* No strict assumption * No strict assumption

Envelope (MLE) Bayes

* Estimation using Maximum
Likelihood

* Estimation through MCMC
approach with rotation of relevant
space

* Can not be used when
predictor is larger than
observations

* Heavy Computation when p is
large
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Data Simulation

Models are analysed under diverse nature of data. Data are simulated
using simrel package (R). In this study, I have included following four
design;

n p R2 relpos gamma

50 15 0.5 1, 2 0.5
50 40 0.5 1, 2 0.5
50 15 0.9 2, 3 0.9
50 40 0.9 2, 3 0.9

n : Number of observations
p : Number of variables
R2 : Variation explained by the model
relpos : Position of relevant components
gamma : Reduction factor of eigenvalue of X

For each of these design, 5000 test samples are simulated.Raju Rimal A comparetive study on PCR, PLS, Envelope and BayesPLS models 4 September 2016 8 / 20



Relevant Position and Eigenvalues

Design: 1 Design: 2 Design: 3 Design: 4
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When Relevant components are at the position of high eigenvalues,
the situation is easier to model
When Relevant components are at the position of low eigenvalues,
for example 5, 10, then the most variation present in X are not
relevant for Y and this will become a very difficult situation.
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Model assessment

Models are compared on the basis of their prediction ability by
measuring test and training Mean Square Error of Prediction (MSEP).
Mean prediction error is calculated as,

(Prediction Error)training =
1
n

n

∑
i=1

(yi − ŷi)
2 =

1
n

n

∑
i=1

(
yi −

(
β̂0 + β̂X i

))2

(Prediction Error)test =
1
n

ntest

∑
i=1

(
yi(test) − ŷi(test)

)2

=
1
n

ntest

∑
i=1

(
yi(test) −

(
β̂0 + β̂X i(test)

))2
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Analysis Results

design: 1
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Analysis Results
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Analysis Results

design: 1 design: 2 design: 3 design: 4
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Conclusion

New methods – Envelope and Bayes, as they claim, are performing
better than algorithmic approach of PLS

However, the performance of MLE approach of Envelope is not
satisfactory when number of variable is large
In the case of Bayes PLS, the prediction error does not raises
noticably (test prediction) after capturing enough information with
few components
This suggests that it is able to find the direction of maximum
variation after successive rotations of predictor subspace
The computation regarding BayesPLS is intensive which will not be
fisible in case of wide dataset (very common in genomic data)
All the models are performing better than the least square solution
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