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Overview

@ Background

o Estimation methods under comparison
o Data Simulation

@ Analysis, Results and Discussions
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Background

@ PLS Population Model [Helland, 1990] which further discussed by
[Naes and Helland, 1993, Helland, 2001]
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@ PLS Population Model [Helland, 1990] which further discussed by
[Naes and Helland, 1993, Helland, 2001]

@ PLS, heavely developed [Wold, 1985, Naes and Helland, 1993, De Jong,
1993], without addressing the population model [Cook et al., 2013]

@ Mostly popular among chemometrician

@ Was not very popular among statistician which has changed and is
nowadays considered as an essential tool for multivariate analysis

@ Accounting the population model, new estimation methods have
been purposed such as Envelope [Cook et al., 2010, Cook and
Zhang, 2016] and BayesPLS [Helland et al., 2012] which are closely
related to PLS

@ Cook et al. [2013] said that PLS is fundamentally an envelope in the
population model
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Background

@ This study attempts to make an emperial comparison among PCR,
PLS, Envelope and BayesPLS model on the basis of their
prediction ability

o Using simrel [Saebo et al., 2015] R-package, data with diverse
nature are simulated.

o simrel allows to have control over latent structure (relevant
component) of the data, fine analysis of strength and weakness of a
models is possible
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Statistical Model

The common ground of all the methods is to best describe (fit) the
multivariate linear model below,

y=XB+e (1)

where,

Response

Matrix of p predictor variable
Regression Coefficients

Error € ~ NID(0, ¢?)

0™ M

Here, both y and X are considered to be centered.
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Statistical Model

All the models under this study consider a subspace of predictor
variables that is relevant for response. They differ in the ways of
finding the subspace and corresponding model estimates. The true
estimates can also be written as,

P 1 p
_y—1 _ t _
B=2xx0xy = ) ei€ioxy = )€

=14 j=1
where,
etO’X
. N
e : Eigenvector of X,
Aj : Eigenvalue of Xy

oxy : Covariance between y and X

So, True regression estimates are the space spanned by the eigenvectors
of population covariance matrix X,.
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Comparison of Methods

PCR PLS

* Regression of response on latent * Estimation through
space of predictor Iterative algorithm

* No strict assumption * No strict assumption
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Comparison of Methods

PCR PLS

* Regression of response on latent * Estimation through

space of predictor Iterative algorithm

* No strict assumption * No strict assumption

Envelope (MLE) Bayes

* Estimation using Maximum * Estimation through MCMC

Likelihood approach with rotation of relevant
space

* Can not be used when * Heavy Computation when p is

predictor is larger than large

observations
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Data Simulation N"m"_BJU

Models are analysed under diverse nature of data. Data are simulated
using simrel package (R). In this study, I have included following four
design;

n p R2 relpos gamma

50 15 05 1,2 0.5

50 40 05 1,2 0.5

50 15 09 2,3 0.9

50 40 09 2,3 0.9
n :  Number of observations
P : Number of variables
R2 :Variation explained by the model
relpos : DPosition of relevant components
gamma : Reduction factor of eigenvalue of X
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Relevant Position and Eigenvalues

Design: 1 Design: 2 Design: 3 Design: 4
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@ When Relevant components are at the position of high eigenvalues,
the situation is easier to model

@ When Relevant components are at the position of low eigenvalues,
for example 5, 10, then the most variation present in X are not
relevant for Y and this will become a very difficult situation.
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Model assessment

Models are compared on the basis of their prediction ability by
measuring test and training Mean Square Error of Prediction (MSEP).
Mean prediction error is calculated as,

L 1 1& P 2
(Prediction Error) ning = " Y (y; = )y ( (/30 + .BXi))
i=1 i=1
o 1 ntest R 2

(Prediction Error),, = - Z <yi(test) — yi(test))

i=1
1 ntest . n 2
= E (yi(test) - (:BO + ﬁXi(test)>)

N
Il
—
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Analysis Results

Models -e- Bayes -- Envelope e~ Least Square —e= PCR ~#~ PLS
design: 1
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Analysis Results

Models -e- Bayes -- Envelope e~ Least Square —e= PCR ~#~ PLS
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Analysis Results

Models -e- Bayes -- Envelope e~ Least Square —e= PCR ~#~ PLS
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Analysis Results

Models -e- Bayes -- Envelope e~ Least Square —e= PCR ~#~ PLS
design: 4
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Analysis Results

Models -e- Bayes -- Envelope e~ Least Square —e= PCR ~o~ PLS

design: 1 design: 2 design: 3 design: 4
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Conclusion

@ New methods — Envelope and Bayes, as they claim, are performing
better than algorithmic approach of PLS
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Conclusion

@ New methods — Envelope and Bayes, as they claim, are performing
better than algorithmic approach of PLS

e However, the performance of MLE approach of Envelope is not
satisfactory when number of variable is large

@ In the case of Bayes PLS, the prediction error does not raises
noticably (test prediction) after capturing enough information with
few components

@ This suggests that it is able to find the direction of maximum
variation after successive rotations of predictor subspace

@ The computation regarding BayesPLS is intensive which will not be
fisible in case of wide dataset (very common in genomic data)

o All the models are performing better than the least square solution
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